Potential Opportunities to Disrupt CKD Progression:

Insights from the CRIC Study

Harold Feldman, MD, MSCE University of Pennsylvania Perelman School of Medicine

22nd of May 2019

- Introduction to the CRIC Study
- Risk factors for CKD progression
 - Types of risk factors
 - Behavioral and lifestyle factors
 - Clinical factors
 - Biomarkers
- A look to the future

- Introduction to the CRIC Study
- Risk factors for CKD progression
 - Types of risk factors
 - Behavioral and lifestyle factors
 - Clinical factors
 - Biomarkers
- A look to the future

CRIC Study Design Overview

- Initial Cohort (2003-2008)
- Supplemental Hispanic Cohort (HCRIC)

Inclusion Criteria

- Age 21-74 years
- eGFR
 - 20-70 ml/min (21-44 yrs)
 - 20-60 ml/min (45-64 yrs)
 - 20-50 ml/min (65-74 yrs)
- ~ 50% DM / female, ~45% AA
- No dx of ADPKD

CRIC Study Design Overview

- Initial Cohort (2003-2008)
- Supplemental Hispanic Cohort (HCRIC)
- New Recruitment 2013-2015 (N=1560)

- Inclusion Criteria (new recruits)
 - Age 45-79 years
 - eGFR 45-70 ml/min
 - Predominantly proteinuric CKD
 - No dx of ADPKD

Study Elements

- Introduction to the CRIC Study
- Risk factors for CKD progression
 - Types of risk factors
 - Behavioral and lifestyle factors
 - Clinical factors
 - Biomarkers
- A look to the future

Types of Risk Factors

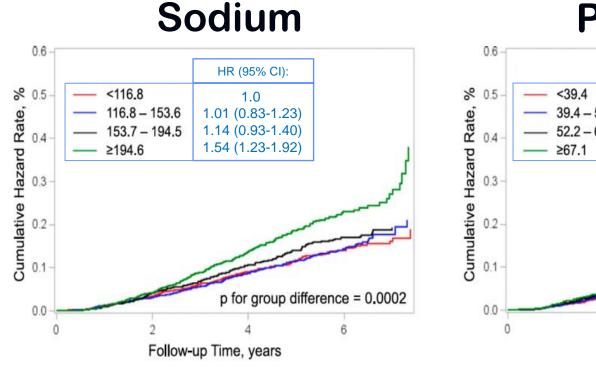
- Progressive kidney damage often arises from
 - Factors that alter the hemodynamics of the kidney
 - The tendency to create scar tissue (fibrogenesis)
- Risk factors for CKD progression are varied and may or may not be modifiable

Modifiability of Risk Factors

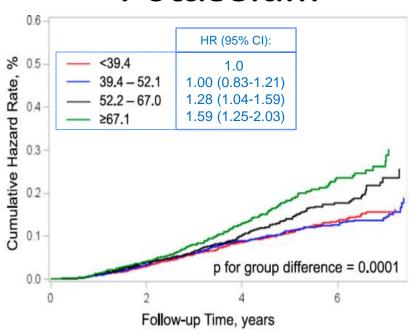
- Modifiable risk factors (e.g., behaviors, environmental exposures) are excellent targets for interventions
- Intervening on these factors may not reduce risk
 - In advanced disease (ex.: if eGFR < 30)
 - If multiple disease mechanisms are active
- Understanding unmodifiable risk factors (e.g., genetics, sex, race) may help improve outcomes by
 - Providing insight into disease mechanisms
 - Identifying individuals for intensive disease management
- Clinical trials are often necessary to assess the impact of interventions on any particular risk factor

- Introduction to the CRIC Study
- Risk factors for CKD progression
 - Types of risk factors
 - Behavioral and lifestyle factors
 - Clinical factors
 - Biomarkers
- A look to the future

Urinary Sodium and Potassium Excretion


He J et al. J Am Soc Nephrol 2015

Potassium


- High dietary sodium (Na) intake, and low potassium (K) intake, → higher BP
- Data on how Na & K intake affects CKD progression are sparse and inconsistent
- Dietary intake measures are unreliable, so urinary Na & K levels served as proxies

Urinary Sodium and Potassium Excretion

Hazard of CKD Progression by Quartile of Na and K Excretion

Potassium

A significant, independent, and potentially important association of high urinary sodium and potassium excretion with CKD progression

Self-Management Behaviors

Schrauben S et al. Am J Kidney Dis 2018

- Self-management reflects patients' engagement in health-related behaviors
- Self-management behaviors have been incorporated into CKD guidelines
- Goals: Define the constellation of selfmanagement domains and assess their relationship with clinical outcomes

Self-Management Behaviors

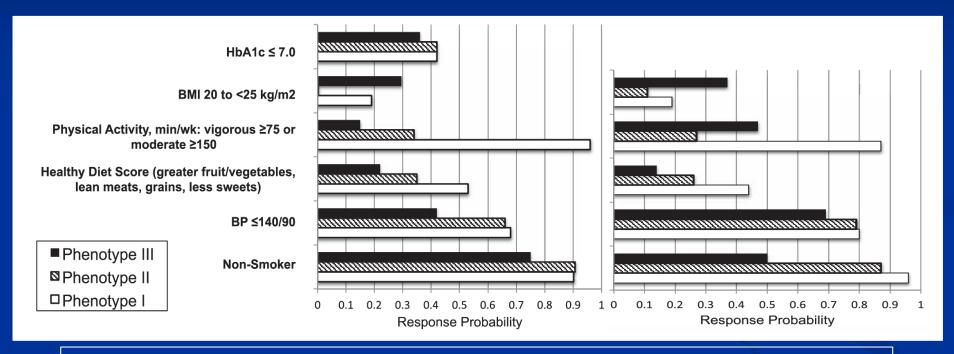
Using the data discovery tool of Principal Components Analysis

and information on 6 domains of self-management -

- Good glycemic control
- Ideal body weight
- Physical activity
- Healthy diet
- Controlled BP
- Not smoking

3 Distinct Subtypes Identified

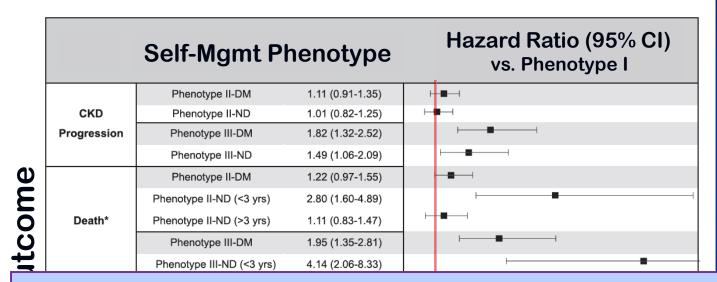
Phenotype III: minimal recommended behaviors


Phenotype II: mixture of recommended and not recommended behaviors

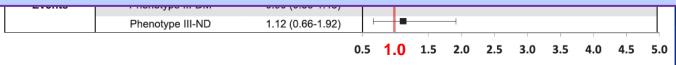
Phenotype I: most recommended behaviors

Self-Management Behaviors

No Diabetes



Phenotype III: minimal recommended behaviors

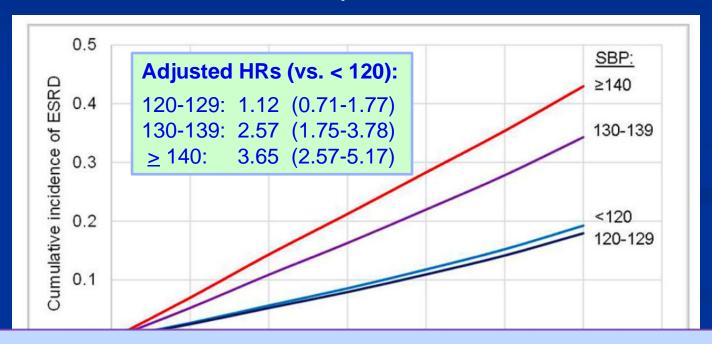

Phenotype II: mixture of recommended and not recommended behaviors

Phenotype I: most recommended behaviors

Self-Management Behaviors and Clinical Outcomes

- Three CKD self-management subgroups are identifiable among patients with CKD
- Subgroups distinguish risk for clinical outcomes and may guide targeted interventions

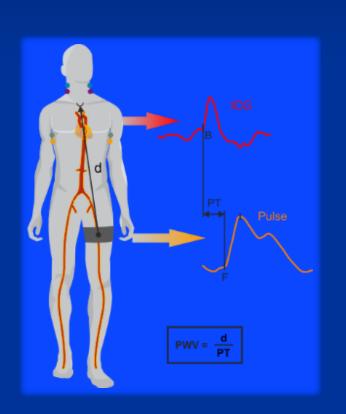
- Introduction to the CRIC Study
- Risk factors for CKD progression
 - Types of risk factors
 - Behavioral and lifestyle factors
 - Clinical factors
 - Biomarkers
- A look to the future


Time-Updated Systolic Blood Pressure

Anderson AH et al. Ann Intern Med 2015

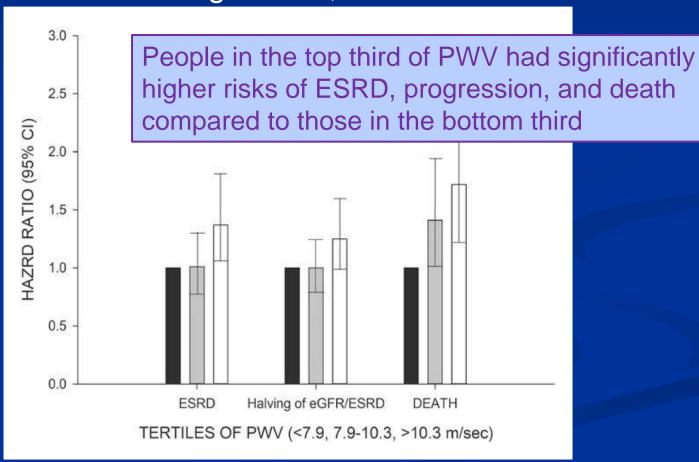
- High blood pressure (BP) → CKD progression in previous studies
- Proper target BP for people with CKD unclear
- CRIC measures BP annually, so we were able to use time-updated BP

Time-Updated Systolic Blood Pressure


Estimated ESRD Incidence at Different Levels of Time-Updated SBP

Achieved BP level of 130-139 mmHg, a level that would meet current clinical targets, is associated with marked elevations in the risk of CKD progression

Pulse Wave Velocity and CKD Progression


Townsend RR et al. Hypertens 2018

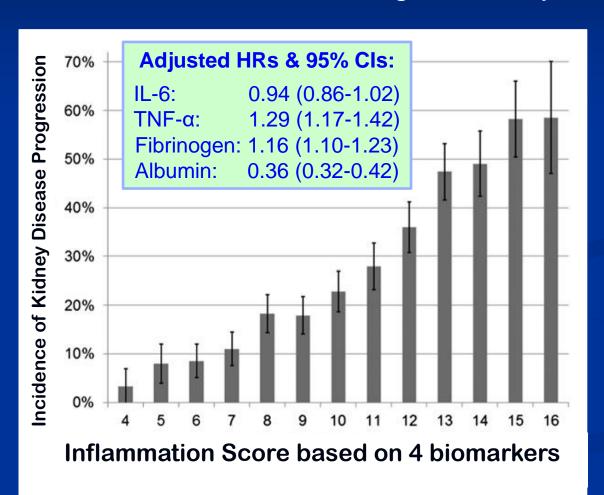
- Pulse wave velocity (PWV) is a measure of arterial stiffness
- In CKD, arterial stiffness → increased risk of CV events independently of high BP
- Drug interventions may reduce arterial stiffness
- The goal of this study was to examine the role of PWV in CKD progression

Pulse Wave Velocity and CKD Progression

Adjusted Associations of Pulse Wave Velocity with ESRD, CKD Progression, and Death

- Introduction to the CRIC Study
- Risk factors for CKD progression
 - Types of risk factors
 - Behavioral and lifestyle factors
 - Clinical factors
 - Biomarkers
- A look to the future

Inflammatory Biomarkers


Amdur RL et al. Clin J Am Soc Nephrol 2016

- CKD is characterized by persistent low-grade inflammation (part of the wound healing process)
- This study evaluated the association of CKD progression with blood levels of a set of biomarkers of inflammation:
 - TNF-α
 - TGF-β
 - Fibrinogen
 - Serum albumin

- High-sensitivity C-reactive protein
- IL-1 and IL-1 receptor antagonist
- IL-6

Inflammation and CKD Progression

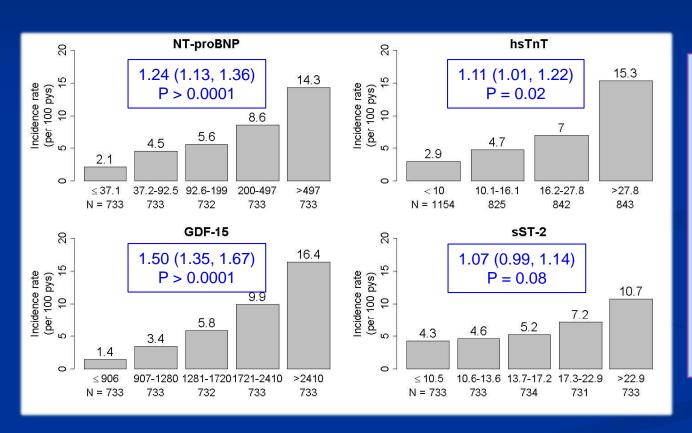
Incidence of CKD Progression by Inflammation Score

Greater levels of inflammation were associated with higher risk of CKD progression

Bansal N et al. AJKD 2019

- Cardiovascular disease (CVD) is strongly associated with CKD progression
- This may be true even for early CVD, which is not easily detected clinically
- Biomarkers can serve as indicators of early subclinical CVD

Cardiac Biomarkers


In the setting of CKD, 4 markers of cardiac injury have been found to predict CVD:

There are few data on the association of these biomarkers with CKD progression

Cardiac Biomarkers

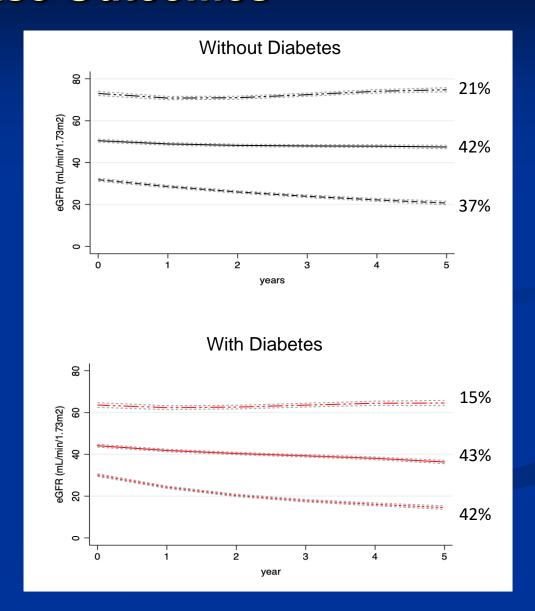
Rates of CKD Progression by Levels of Cardiac Biomarkers

Higher levels of NT-proBNP, hsTnT, and GDF-15 were associated with higher rates of CKD progression

HRs are for 1 SD increase in log-transformed level of the given biomarker.

- Introduction to the CRIC Study
- Risk factors for CKD progression
 - Types of risk factors
 - Behavioral and lifestyle factors
 - Clinical factors
 - Biomarkers
- A look to the future

A Look to the Future

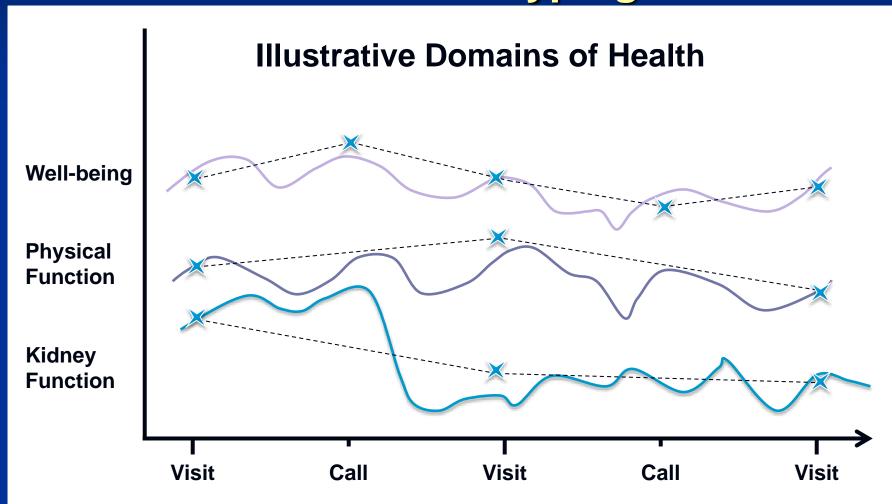

2018 - 2023

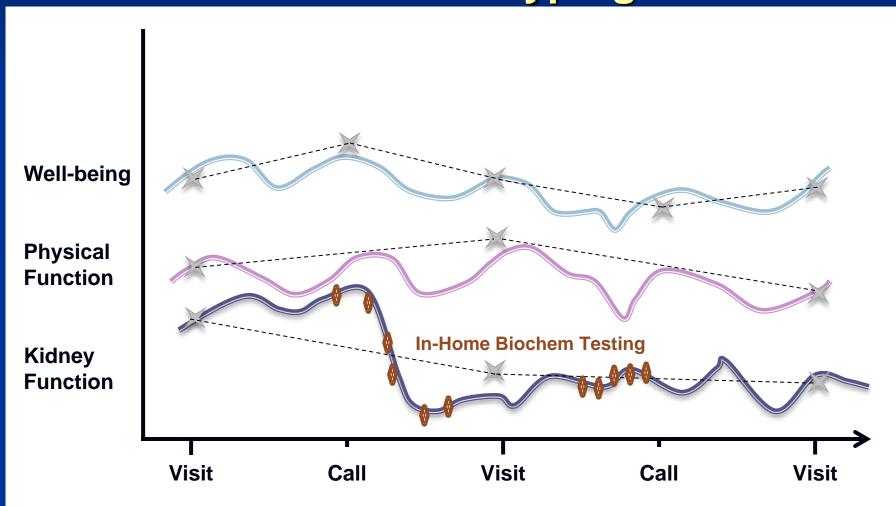
 Develop more nuanced characterizations of the trajectories of CKD progression

Novel Approaches to Subclassify Kidney Disease Outcomes

Group-Based Trajectory Modeling

Identifies clusters of individuals following similar longitudinal eGFR patterns


A Look to the Future


2018 - 2023

- Develop more nuanced characterizations of the trajectories of CKD progression
- Make use of mobile and wearable devices to characterize health

CRIC 2018-23 Expanding the Depth and Breadth of Phenotyping

CRIC 2018-23 Expanding the Depth and Breadth of Phenotyping

CRIC 2018-23

With Deep Appreciation!

CRIC Study Participants
CRIC Investigators and Collaborators
CRIC Study Coordinators
NIH-NIDDK

